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Abstract We discuss the application of perturbation theory to a system of particles
confined in a spherical box. A simple argument shows that the particles behave almost
independently in sufficiently strong confinement. We choose the helium atom with a
moving nucleus as a particular example and compare results of first order with those
for the nucleus clamped at the center of the box. We provide a suitable explanation
for some numerical results obtained recently by other authors.
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1 Introduction

In a recent paper Montgomery et al. [1] solved the Schrödinger equation for a He atom
with its nucleus clamped at the origin of a box of radius Rc with impenetrable walls.
They applied perturbation theory for the case of strong confinement (sufficiently small
Rc) and obtained the first five coefficients of the expansion (with different degrees of
accuracy). One of the conclusions in that paper was that the interaction between the
electrons decreases with the box radius. The authors illustrated this behavior by means
of the overlap between the wavefunctions for the confined He+ and for the free electron
in the box.

The purpose of this paper is to discuss those numerical results from a more general
point of view. To this end in Sect. 2 we apply perturbation theory to a system of N
particles in a spherical box and discuss the behaviour of a more general overlap integral.
As a particular example, we compare the energies (corrected through first order) of
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the He atom when the nucleus is clamped at the center of the box and when it moves
within the box. Finally, in Sect. 3 we comment on the results and draw conclusions.

2 Perturbation theory for strong confinement

We consider a system of N particles of masses mi and charges qi . The nonrelativistic
Hamiltonian operator is

Ĥ = − h̄2

2

N∑

i=1

∇2
i

mi
+

N−1∑

i=1

N∑

j=i+1

qi q j

4πε0ri j
(1)

where ri j = |ri − r j | is the distance between the pair of particles located at ri and r j .
If the system is confined in a box of radius Rc with impenetrable walls, any solution

ψ to the time-independent Schrödinger equation

Ĥψ = Eψ (2)

should vanish when ri = |ri | ≥ Rc for any given particle i . In order to apply perturba-
tion theory in the case of strong confinement Rc → 0 we first convert the Schrödinger
equation (2) into a more convenient dimensionless eigenvalue equation. We choose
a representative particle (say i = 1) and define dimensionless masses m′

i = mi/m1,
charges q ′

i = qi/q1 and coordinates r′
i = ri/Rc (∇′

i = Rc∇i ). We thus obtain a
dimensionless Hamiltonian operator
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(3)

and the dimensionless eigenvalue equation

Ĥdϕ = εϕ, ε = m1 R2
c

h̄2 E = m1a2λ2

h̄2 E (4)

The new boundary conditions are ϕ = 0 if any r ′
i = |r′

i | ≥ 1. Note that if the chosen
reference particle is an electron, then m1 = me, q1 = −e and a = a0 is the Bohr
radius. The transformation just proposed is a generalization of the one recently applied
to the confined hydrogen atom [2].

It is clear that Ĥd(λ = 0) = Ĥ0
d is the dimensionless Hamiltonian operator for a

system of N free particles in a spherical box of unit radius. Therefore, we can solve
the eigenvalue equation Ĥ0

d ϕ
(0) = ε(0)ϕ(0) exactly in terms of products of spheri-

cal harmonics and Bessel functions [1–5]. It may also be necessary to consider the
permutational symmetry of the wavefunction and add the corresponding spin factors
[1].
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For concreteness, let us consider the He atom. We assume that the particles 1 and 2
are the electrons and the remaining one is the nucleus; that is to say: m1 = m2 = me

and m3 = mn . Obviously, in such a case m′
1 = m′

2 = 1, m′
3 = mn/me and the

unperturbed wavefunction for the ground state is

ϕ(0)(r ′
1, r

′
2, r

′
3) = 2

sin(πr ′
1)

r ′
1

sin(πr ′
2)

r ′
2

sin(πr ′
3)

r ′
3

[α(1)β(2)− β(1)α(2)] (5)

Note that the present model accounts for the motion of the nucleus and that the nuclear
factor sin(πr ′

3)/r ′
3 does not appear if this particle is clamped at the center of the box

[1,5].
If we apply straightforward Rayleigh–Schrödinger perturbation theory we obtain

the well–known expansions

ε =
∞∑

j=0

ε( j)λ j , ϕ =
∞∑

j=0

ϕ( j)λ j (6)

In particular, for the energy we have

E = h̄2

m1a2

[
ε(0)

λ2 + ε(1)

λ
+ ε(2) + . . .

]
(7)

that is a generalization of the result derived by Laughlin [4] and discussed by Laughlin
and Chu [5] and Montgomery et al. [1]. Note that present Eqs. (6) and (7) apply to the
most general case of a system of N particles (3).

If both ϕ and ϕ(0) are normalized to unity we can easily prove that

∣∣∣〈ϕ| ϕ(0)
〉∣∣∣ ≤ 1, lim

λ→0

∣∣∣〈ϕ| ϕ(0)
〉∣∣∣ = 1 (8)

which clearly account for the behaviour of the overlap integral in Fig. 1 of Montgomery
et al. [1] for the particular case of the He+. We stress that Eq. (8) applies to the general
case of N particles.

As an illustrative example we calculate the energy of the helium atom corrected
through first order. When the nucleus is clamped at the origin we have [1,5]

ε(λ)

λ2 = 9.8696044

λ2 − 7.9645404

λ
(9)

On the other hand, when the nucleus moves the result is

ε(λ)

λ2 = 9.870280744

λ2 − 5.358219501

λ
(10)

where we have chosen mn = 7296.300 me. It is worth noting that the effect of the
nuclear motion is more noticeable on the average potential energy than on the average
kinetic one in agreement with previous results for the hydrogen atom [2].
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3 Conclusions

We have shown that converting the Schrödinger equation into a dimensionless eigen-
value one greatly facilitates the application of perturbation theory to strongly confined
systems. In particular this approach clearly shows that the interaction between the
particles becomes negligible as the confinement increases. In this way we could pro-
vide a suitable mathematical basis for recent numerical calculations on the He atom
with a nucleus clamped at origin. Eq. (8) not only explains the behavior of the overlap
integral calculated by Montgomery et al. [1] but also reveals that the same kind of
curve should be expected for any system of particles confined in a spherical box.

We have also shown that the effect of the nuclear motion on the kinetic energy of
the confined atom is not as important as its effect on the average Coulomb interactions.
The reason is that the energy of the confined atom changes markedly with the location
of the clamped nucleus within the box and is minimum at the center [6]. Therefore,
when the nucleus is allowed to move we expect a sort of average contribution to the
potential energy from all the possible locations inside the box. In addition to it, the
energy of the clamped-nucleus atom (9) is smaller than the moving-nucleus one (10)
for all values of Rc at least in the strong-coupling regime.
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